Edinburgh University seeks commercial partner to exploit low-carbon breakthrough

hydrogen moleculeEdinburgh University is seek commercial partners to exploit a low-carbon breakthrough in producing high-purity hydrogen from coal-like materials.

Academics at Edinburgh, in collaboration with researchers at Yonsei University, South Korea, have developed a process that improves the production rate of high purity hydrogen (H2).

This breakthrough will provide a significant step-change for a broad range of chemical engineering and industrial applications where there is significant demand for the gas, in, for example, low carbon hydrogen-based heat and power production, across large-scale industrial plants, or powering the next generation of hydrogen fuel cells used in hybrid and electric vehicles.

The University’s commercialisation arm, Edinburgh Research & Innovation, is now seeking industry partners to licence this technology for development into commercially viable application.

Until now, the primary form of hydrogen production has been by natural gas (methane) steam reforming. During this process, the hydrocarbons in the gas are converted at high temperature into a hydrogen-rich mixture of gases. The hydrogen is then separated out during an additional process step.

Natural Gas is generally used as raw material for the production of commercial, ultra-pure hydrogen (99.9+ % H2 purity). However, the demands to produce high purity hydrogen from cheaper raw materials such as coal and biomass continue to increase.

Dr Hyungwoong Ahn, a Senior Lecturer in Chemical Engineering at Edinburgh University of Edinburgh’s School of Engineering, reveals how, through a series of adopted processes, the research uncovered ways to produce the low carbon hydrogen from coal that improves on  ultra-pure hydrogen yield:

He explained: “By integrating a coal‐to‐hydrogen process with carbon capture, the hydrogen yield per unit coal feed can be greatly improved using the carbon capture unit used on a synthesis gas stream generated by coal gasification. This helps to improve the hydrogen yield by greater and more efficient use of the H2Pressure Swing Absorption (PSA) tail gas – an important separation process for gases and applied widely in gas purification and gas recovery.”

Prof. Stuart Haszeldine
Prof. Stuart Haszeldine

Low-carbon and related issues will feature prominently in SCOTLAND’S RENEWABLE FUTURE conference, 26 May 2016, where Prof. Stuart Haszeldine, Director of the Scottish Carbon Capture and Storage (SCCS) is among the many prominent speakers.

For more information: http://www.scotlandsrenewablefuture.co.uk/

John Jeffrey, ERI’s business development executive, added: “This breakthrough now allows us to look for industrial and commercialisation partners who see the clear advantages in this research.

“The production of high-purity hydrogen and the efficiency of the process, from start to finish, will amount to an improvement in hydrogen production yield by more than 2% further to what would be expected of a solid-to-Hprocess with CO2 capture and a total auxiliary power consumption reduction by around 7%.

“These can be viewed as significant savings depending on the output of the processing plant.”

Pixie Energy

Pixie logo Pixie Energy is an incubator and a facilitator of strategic research and project work, focusing on energy regulation, policy and markets at the local and national level. Find out more about Pixie Energy here.

Local Energy Matters: Scotland

Local Energy Matters: Scotland is a free-to-download brochure with a focus on energy tariffs in the two Scottish electricity distribution regions, as well news on local energy and low-carbon schemes.

Previous editions can be download here.

Scottish energy market overview

You can read an overview of the Scottish energy market here.

Scottish Government energy feed