Scots scientists prove low-cost C02 monitoring system to help develop carbon capture sector

A computerised image of a carbon capture scheme
A computerised image of a carbon capture scheme

Scottish scientists have discovered cost-effective and reliable ways to monitor the storage of the most common greenhouse gas – carbon dioxide (CO2) –  deep underground. 

These findings will help the development of carbon capture and storage (CCS) technology, in which CO2 from power stations and industrial processes is stored deep underground, to prevent emissions from contributing to climate change. 

The researchers studied different forms of oxygen in waters sampled from rocks deep below ground at CO2 storage sites in Australia, Canada, Germany and the USA. They found that in each of these sites the reservoir waters changed their oxygen fingerprint when in contact with bubbles of trapped CO2. 

Testing samples of water for this altered form of oxygen provides a simple way to measure the amount of CO2 stored within the rock. The work shows that a large amount of injected CO2 is very quickly retained in the underground rocks. 

The team say their technique provides an inexpensive monitoring solution, as they need only measure the CO2 injected into a site and water samples from before and after injection to find out how much of the gas has been trapped.

The research was carried out by Edinburgh University, a founding partner of Scottish Carbon Capture & Storage (SCCS), and the University of Calgary with assistance from Australian research organisation, CO2CRC

The study, published in the International Journal of Greenhouse Gas Control, was supported by the UK Carbon Capture and Storage Research Centre.

Dr Sascha Serno, University of Edinburgh’s School of GeoSciences, who led the study, said: “Our results highlight the promising potential of using oxygen compositions to monitor the fate of CO2 injected underground.

“Our study shows that this tool has been effective in tracking the fate of CO2 in five different storage sites located around the world. The oxygen method we have developed is simple and cheap, and can be easily combined with other monitoring techniques for CCS projects in the UK and beyond.”

Dr Stuart Gilfillan, also of University of Edinburgh’s School of GeoSciences, the study co-ordinator, added: “Understanding the fate of CO2 injected into the underground for storage is essential for engineering secure CO2 stores.

“Our study shows that measurements of the oxygen compositions in the reservoir water and CO2 injected underground should be standard practice in future storage sites. These can be completed at minimal cost for the site operators and will provide reassurance on the security of storage of the injected CO2.”

27 July 2017

Pixie Energy

Pixie logo Pixie Energy is an incubator and a facilitator of strategic research and project work, focusing on energy regulation, policy and markets at the local and national level. Find out more about Pixie Energy here.

Local Energy Matters: Scotland

Local Energy Matters: Scotland is a free-to-download brochure with a focus on energy tariffs in the two Scottish electricity distribution regions, as well news on local energy and low-carbon schemes.

Previous editions can be download here.

Scottish energy market overview

You can read an overview of the Scottish energy market here.

Scottish Government energy feed